Make your own free website on Tripod.com





















1 | 2 | 3 | 4 | 5





4.jpg

  • Leyes de Newton.
  • Teoría de la Relatividad de Einstein.
  • Desarrollo de la Teoría.

   Ley de la gravitación. La gravedad es la fuerza de atracción mutua que experimentan dos objetos con masa. Se trata de una de las cuatro fuerzas fundamentales observadas hasta el momento en la naturaleza. El efecto de la fuerza de gravedad sobre un cuerpo suele asociarse en lenguaje cotidiano al concepto de peso. La interacción gravitatoria es la responsable de los movimientos a gran escala en todo el Universo y hace, por ejemplo, que los planetas del Sistema Solar sigan órbitas predeterminadas alrededor del Sol.

   Isaac Newton fue la primera persona en darse cuenta de que la fuerza que hace que los objetos caigan con aceleración constante en la Tierra y la fuerza que mantiene en movimiento los planetas y las estrellas es la misma, y a él se debe la primera teoría general de la gravitación, expuesta en su obra Philosophiae Naturalis Principia Mathematica.Ley de la Gravitación Universal de Newton. Esquema de la fuerza de gravedad entre dos masas M y m, separadas una distancia r.

  La Ley de la Gravitación Universal de Newton establece que la fuerza que ejerce una partícula puntual con masa m1 sobre otra con masa m2 es directamente proporcional al producto de las masas, e inversamente proporcional al cuadrado de la distancia que las separa:siendo el vector unitario que va de la partícula 1 a la 2, y donde G es la Constante de gravitación universal, siendo su valor 6,67 × 10-11 Nm²/kg² Aceleración de gravedad. Según las leyes de Newton, toda fuerza ejercida sobre un cuerpo le imprime una aceleración. En presencia de un campo gravitatorio, todo cuerpo se ve sometido a la fuerza de la gravedad, y la aceleración que imprime esta fuerza, o aceleración de la gravedad, se representa por la letra g.

   De este modo, todo cuerpo que se somete a la libre influencia de un campo gravitatorio (es decir, sin otras fuerzas que interfieran, como el rozamiento) se moverá con velocidad creciente hacia la masa que genera el campo. El valor de g depende de la fuerza gravitatoria en cada punto del campo, y se denomina intensidad del campo gravitatorio. En la superficie de la Tierra g tiene un valor de 9,8m / s2. Este valor de g es considerado como el valor de referencia, y así se habla de naves o vehículos que aceleran a varios g.

   En virtud del principio de equivalencia, un cuerpo bajo una aceleración dada sufre los mismos efectos que si estuviese sometido a un campo gravitatorio cuya aceleración gravitatoria fuese la misma. Antes de Galileo Galilei se creía que un cuerpo pesado cae más de prisa que otro de menos peso. Según cuenta una leyenda, Galileo subió a la Torre inclinada de Pisa y arrojó dos objetos de masa diferente para demostrar que el tiempo de caída libre era, virtualmente, el mismo para ambos. En realidad se cree hacía rodar cuerpos en planos inclinados y así medía de forma más precisa la aceleración. Variación de la gravedad en la Tierra.

   La gravedad es máxima en la superficie. Tiende a disminuir al alejarse del planeta, por aumentar la distancia r entre las masas implicadas. Sin embargo, también disminuye al adentrarse en el interior de la Tierra, ya que cada vez una porción mayor de planeta queda por "encima", y cada vez es menos la masa que queda por "debajo". En el centro de la Tierra, hay una enorme presión por el peso de todo el planeta, pero la gravedad es nula. Así mismo, aumenta con la latitud debido a dos efectos: el achatamiento de la Tierra en los polos hace que la distancia r se reduzca a medida que la latitud aumenta, y la rotación terrestre genera una aceleración centrífuga que es máxima en la Línea ecuatorial y nula en los polos.

    Los valores de g en el ecuador y en los polos son respectivamente: gec = 9,7303 m/s² gpolo = 9,8322 m/s² Teoría gravitacional de Einstein Einstein revisó la teoría newtoniana, describiendo la gravedad como una deformación de la geometría del espacio-tiempo en su Relatividad general. Las teorías actuales, apuntan a una "unidad de medida de la gravedad" (el gravitón), como partícula que ejerce dicha fuerza. La gravedad como fuerza fundamental La gravedad es una de las cuatro fuerzas fundamentales de la Naturaleza, junto con el electromagnetismo, la interacción nuclear fuerte y la interacción nuclear débil. A diferencia de las interacciones nucleares y a semejanza del electromagnetismo, actúa a grandes distancias.

   Sin embargo, al contrario que el electromagnetismo, la gravedad siempre es una fuerza de tipo atractiva. Este es el motivo de que la gravedad sea la fuerza más importante a la hora de explicar los movimientos celestes. La gravedad en la teoría cuántica La gravedad aparece como fuerza fundamental que liga a todas las partículas con masa con otras a través de otra partícula, un bosón transmisor del campo gravitatorio denominado gravitón.

   La unificación de la fuerza gravitatoria con las otras fuerzas fundamentales sigue resistiéndose a los físicos. La aparición en el Universo de materia oscura o una aceleración de la expansión del Universo hace pensar que todavía falta una teoría satisfactoria de las interacciones gravitatorias completas de las partículas con masa. Leyes de Newton. Se denomina Leyes de Newton a tres leyes concernientes al movimiento de los cuerpos. La formulación matemática fue publicada por Isaac Newton en 1687 en su obra Philosophiae Naturalis Principia Mathematica. Constituyen, junto con las leyes de transformación de Galileo, la base de la mecánica clásica. En el tercer volumen de los Principia Newton mostró que, combinando estas leyes con su Ley de la gravitación universal, se pueden deducir y explicar las Leyes de Kepler sobre el movimiento planetario.

   Primera Ley de Newton o Ley de la inercia En ocasiones, esta ley se nombra también Principio de Galileo. En la ausencia de fuerzas, todo cuerpo continúa en su estado de reposo o de movimiento rectilíneo y uniforme respecto de un sistema de referencia Galileano. Este principio puede ser reformulado de la manera siguiente: Un sistema de referencia en el que son válidas las leyes de la física clásica es aquel en el cual todo cuerpo permanece en un estado de movimiento rectilíneo y uniforme en ausencia de fuerzas. La Primera ley constituye una definición de la fuerza como causa de las variaciones de velocidad de los cuerpos e introduce en física el concepto de sistemas de referencia inerciales o sistemas de referencia Galileanos. Los sistemas no inerciales son todos aquellos sistemas de referencia que se encuentran acelerados. Desde la época de Aristóteles y hasta la formulación de este principio por Galileo y Newton, se pensaba que el estado natural de movimiento de los cuerpos era nulo y que las fuerzas eran necesarias para mantenerlos en movimiento.

   Newton y Galileo mostraron que los cuerpos se mueven a velocidad constante y en línea recta si no hay fuerzas que actúen sobre ellos. Este principio constituyó uno de los descubrimientos más importantes de la física. En la experiencia diaria los cuerpos están sometidos a la acción de fuerzas de fricción o rozamiento que van frenando los cuerpos progresivamente. Segunda Ley de Newton. La variación del momento lineal de un cuerpo es proporcional a la resultante total de las fuerzas actuando sobre dicho cuerpo y se produce en la dirección en que actúan las fuerzas. Newton definió el momento lineal (momentum) o cantidad de movimiento como una magnitud representativa de la resistencia de los cuerpos a alterar su estado de movimiento definiendo matemáticamente el concepto coloquial de inercia. , donde m se denomina masa inercial.

   La segunda ley se escribe por lo tanto: Para los cuerpos de masa constante la segunda ley de Newton adquiere la forma más familiar de: . Esta ley constituye la definición operacional del concepto de fuerza ya que tan sólo la aceleración puede medirse directamente. Esta ecuación es válida en el marco de la teoría de la relatividad de Albert Einstein si se considera que el momento de un cuerpo se define como: Tercera Ley de Newton o Ley de acción y reacción. Por cada fuerza que actúa sobre un cuerpo, éste realiza una fuerza igual pero de sentido opuesto sobre el cuerpo que la produjo. En "la ley de acción reacción fuerte" las fuerzas, además de ser de la misma magnitud y opuestas, son colineales. La forma fuerte de la ley no se cumple siempre. En la "ley de acción reacción débil" no se exige que las fuerzas de acción y reacción sean colineales, tan sólo de la misma magnitud y sentido opuesto, sin actuar necesariamente en la misma línea. Ciertos sistemas magnéticos no cumplen el enunciado fuerte de esta ley, y tampoco lo hacen las fuerzas eléctricas ejercidas entre una carga puntual y un dipolo.

    La forma débil de la ley de acción-reacción se cumple siempre. Esta ley junto con las anteriores permite enunciar los principios de conservación del momento lineal y del momento angular.Teoría gravitacional de Einstein Einstein revisó la teoría newtoniana, describiendo la gravedad como una deformación de la geometría del espacio-tiempo en su Relatividad general. Las teorías actuales, apuntan a una "unidad de medida de la gravedad" (el gravitón), como partícula que ejerce dicha fuerza. Espacio-tiempo La expresión espacio-tiempo ha devenido de uso corriente a partir de la Teoría de la Relatividad especial formulada por Einstein en 1905.

   De esta forma se hace referencia a la importancia de considerar como variable no sólo las tres dimensiones del espacio sino también el tiempo para comprender cabalmente los fenómenos físicos que ocurren en el Universo; es usual la expresión "cuarta dimensión" o "espacio de cuatro dimensiones". En general, un evento cualquiera puede ser descrito por una o más coordenadas espaciales, y una temporal. Por ejemplo, para identificar de manera única un accidente automovilístico, se pueden dar la longitud y latitud del punto donde ocurrió (dos coordenadas espaciales), y cuándo ocurrió (una coordenada temporal). En el espacio tridimensional, se requieren tres coordenadas espaciales.

    Sin embargo, la visión tradicional, sobre la cual se basa la Mecánica Clásica de Newton, es que el tiempo es una coordenada independiente de las coordenadas espaciales. Esta visión concuerda con la experiencia: si un evento ocurre a 10 metros, es natural preguntar a 10 metros de qué, pero si nos informan que ocurrió un accidente a las 10 de la mañana en nuestro país, ese tiempo tiene carácter absoluto. Sin embargo, resultados como el experimento de Michelson-Morley, y las Ecuaciones de Maxwell para la Electrodinámica, sugerían, a principios del Siglo XX, que la velocidad de la luz es constante, independiente de la velocidad del emisor u observador, en contradicción con la Mecánica clásica.

    Einstein propuso, como solución a este y otros problemas de la Mecánica clásica, considerar como postulado la constancia de la velocidad de la luz, y prescindir de la noción del tiempo como una coordenada independiente. En la Teoría de la Relatividad, espacio y tiempo tienen carácter relativo, y las transformaciones de coordenadas entre observadores inerciales (las Transformaciones de Lorentz), involucran una combinación de las coordenadas espaciales y temporal. La expresión espacio-tiempo recoge entonces la noción de que el espacio y el tiempo ya no pueden ser consideradas entidades independientes. Las consecuencias de esta relatividad del tiempo han tenido diversas comprobaciones experimentales. Una de ellas se realizó utilizando dos relojes atómicos de elevada precisión, inicialmente sincronizados, uno de los cuales se mantuvo fijo mientras que el otro fue transportado en un avión.

   Al regresar del viaje se constató que mostraban horas distintas, habiendo transcurrido "el tiempo" más lentamente para el reloj en movimiento. La Teoría General de la Relatividad o Relatividad General es la teoría de la gravedad publicada por Albert Einstein en 1915 y 1916. El principio fundamental de esta teoría es el Principio de equivalencia que describe la aceleración y la gravedad como aspectos distintos de la misma realidad. Einstein postuló que no se puede distinguir experimentalmente entre un cuerpo acelerado uniformemente y un campo gravitatorio uniforme. La teoría general de la relatividad permitió fundar también el campo de la cosmología.

    En esta teoría, el espacio-tiempo es tratado como una banda Lorentziana de 4 dimensiones la cual se curva por la presencia de masa, energía, y momento lineal . La relación entre el momento y la curvatura del espacio-tiempo es gobernada por las ecuaciones del campo de Einstein. En la relatividad general, fenómenos que la mecánica clásica atribuye a la acción de la fuerza de gravedad, (tales como una caída libre la orbita de un planeta o la trayectoria de una nave espacial) son representados como movimientos inerciales en un espacio-tiempo curvado.

    El movimiento de objetos influenciados por la geometría del espacio-tiempo (movimiento inercial) ocurre en el espacio-tiempo que los físicos denominan espacio de Minkowski Principios fundamentales La relatividad general está basada en un conjunto de principios fundamentales que guiaron su desarrollo. Estos son: El principio general de la relatividad: Las leyes de la física deben ser las mismas para todos los observadores (inerciales o no). El principio general de covariancia: Las leyes de la física deben tomar la misma forma en todos los sistemas de coordenadas.

   El movimiento inercial se realiza a través de trayectorias geodésicas. El principio de invariancia local de Lorentz: Las leyes de la relatividad especial se aplican localmente para todos los observadores inerciales. Curvatura del espacio-tiempo. Esto permite explicar los efectos gravitacionales como movimientos inerciales en un espacio-tiempo curvado. La curvatura del espacio-tiempo está creada por el estrés de la masa y la energía en el espacio tiempo. La curvatura del espacio-tiempo puede calcularse a partir de la densidad de la materia y energía al igual que de las ecuaciones de campo de Einstein. El principio de equivalencia que había guiado el desarrollo inicial de la teoría es una consecuencia del principio general de la relatividad y del principio del movimiento inercial sobre trayectorias geodésicas.

   Curvatura del espacio-tiempo Una de las principales consecuencias de la gravedad es una manifestación de la geometría local del espacio-tiempo. Las bases matemáticas de la teoría se remontan a los axiomas de la geometría euclídea y los muchos intentos de probar, a lo largo de los siglos, el quinto postulado de Euclides, que dice que las líneas paralelas permanecen siempre equidistantes, y que culminaron con la constatación por Bolyai y Gauss de que este axioma puede obviarse dando lugar a las geometría no euclideanas.

   En este caso, el espacio en lugar de ser plano, puede ser abierto o hiperbólico (existe no una, si no infinitas rectas paralelas) o cerrado o parabólico (no existe ninguna recta paralela). Las matemáticas generales de la estas geometrías fueron desarrolladas por el discípulo de Gauss, Riemann, pero no fue hasta después de que Einstein desarrolló la teoría de la Relatividad especial que la geometría no euclidiana del espacio y el tiempo fue conocida. Gauss demostró que no hay razón para que la geometría del espacio deba ser euclidiana, lo que significa que si un físico pone una marca, y un cartógrafo permanece a una cierta distancia y se mide su longitud por triangulación basada en la geometría euclidiana, entonces no está garantizado que sea dada la misma respuesta si el físico porta la marca consigo y mide su longitud directamente.

    Por supuesto, para una marca no podría medirse en la práctica la diferencia entre las dos medidas, pero existen medidas equivalentes que deben detectar la geometría no euclidiana del espacio-tiempo directamente, por ejemplo el experimento de Pound-Rebka (1959) detectó el cambio en la longitud de onda de la luz de una fuente de cobalto surgiendo por 22.5 metros contra la gravedad en un local del Laboratorio de Física Jefferson en la Universidad de Harvard, y la cadencia de un reloj atómico en un satélite GPS alrededor de la tierra tiene que ser corregida por efecto de la gravedad. Desarrollo de la teoría La idea fundamental en la relatividad es que no podemos hablar de las cantidades físicas de velocidad o aceleración sin definir antes el sistema de referencia de las mismas. Y dicho sistema de referencia es definido por elección particular.

   En tal caso, todo movimiento es definido y cuantificado relativamente a otra materia. En la teoría especial de la relatividad se asume que los sistemas de referencia pueden ser extendidos indefinidamente en todas las direcciones en el espacio-tiempo. Pero en la teoría general se reconoce que sólo es posible la definición de sistemas aproximados de forma local y durante un tiempo finito para regiones finitas del espacio (de forma similar a como podemos dibujar mapas planos de regiones de la superficie terrestre pero no podemos extenderlos para cubrir la superficie de toda la tierra sin sufrir distorsión). En relatividad general, las leyes de Newton son asumidas sólo en relación a sistemas de referencia locales. En particular, las partículas libres viajan trazando líneas rectas en sistemas inerciales locales (Lorentz).

   Cuando esas líneas se extienden, no aparecen como rectas, siendo llamadas geodésicas. Entonces, la primera ley de Newton se ve reemplazada por la ley del movimiento geodésico. Distinguimos sistemas inerciales de referencia, en los que los cuerpos mantienen un movimiento uniforme sin la actuación de o sobre otros cuerpos, de los sistemas de referencia no inerciales en los que los cuerpos que se mueven libremente sufriendo una aceleración derivada del propio sistema de referencia. En sistemas de referencia no inerciales se percibe fuerza derivada del sistema de referencia, no por la influencia directa de otra materia. Nosotros sentimos fuerzas "gravitatorias" cuando vamos en un coche y giramos en una curva como la base física de nuestro sistema de referencia. De forma similar actúan el efecto Coriolis y la fuerza centrífuga cuando definimos sistemas de referencia basados en materia rotando (tal cual la Tierra o un niño dando vueltas).

    El principio de equivalencia en relatividad general establece que no hay experimentos locales que sean capaces de distinguir una caída no-rotacional en un campo gravitacional a partir del movimiento uniforme en ausencia de un campo gravitatorio. Es decir, no hay gravedad en un sistema de referencia en caída libre. Desde esta perspectiva la gravedad observada en la superficie de la Tierra es la fuerza observada en un sistema de referencia definido por la materia en la superficie que es no libre (es ligada) pero es actividad hacia abajo por la materia terrestre, y es análoga a la fuerza "gravitatoria" sentida en un coche dando una curva. Esquema de la curvatura del espacio-tiempo alrededor de una fuente de fuerza de gravedad.Matemáticamente, Einstein modeló el espacio-tiempo por una variedad pseudo-Riemaniana, y sus ecuaciones de campo establecen que la curvatura de la variedad en un punto está relacionada directamente con el tensor de energía en dicho punto; dicho tensor es una medida de la densidad de materia y energía. La curvatura le dice a la materia como moverse, y de forma recíproca la materia le dice al espacio como curvarse.

    La ecuación de campo posible no es única, habiendo posibilidad de otros modelos sin contradecir la observación. La relatividad general se distingue de otras teorías de la gravedad por la simplicidad de acoplamiento entre materia y curvatura, aunque todavía no se ha resuelto su unificación con la Mecánica cuántica y el reemplazo de la ecuación de campo con una ley adecuada a la cuántica. Pocos físicos dudan que una teoría así, una teoría del todo dará a la relatividad general en el límite apropiado, así como la relatividad general predice la ley de la gravedad en el límite no relativista. La ecuación de campo de Einstein contiene un parámetro llamado "constante cosmológica" Λ que fue originalmente introducida por este autor para permitir un universo estático.

    Este esfuerzo no tuvo éxito por dos razones: la inestabilidad del universo resultante de tales esfuerzos teóricos, y las observaciones realizadas por Hubble una década después confirman que nuestro universo es de hecho no estático sino en expansión. Así Λ fue abandonada, pero de forma bastante reciente, técnicas astronómicas encontraron que un valor diferente de cero para Λ es necesario para poder explicar algunas observaciones.

   Las ecuaciones de campo se leen como sigue: donde R{ik} es el tensor de curvatura de Ricci, R es el escalar de curvatura de Ricci, g{ik} es el tensor métrico, Λ es la constante cosmológica, T{ik} es el tensor de energía, c es la velocidad de la luz y G es la constante gravitatoria universal, de forma similar a lo que ocurre en la gravedad newtoniana. g{ik} describe la métrica de la variedad y es un tensor simétrico 4 x 4, por lo que tiene 10 componentes independientes. Dada la libertad de elección de las cuatro coordenadas espaciotemporales, las ecuaciones independientes se reducen a seis. Predicciones de la Relatividad General Se considera que la teoría de la relatividad general fue comprobada por primera vez en la observación de un eclipse total de Sol en 1919 realizada por Sir Arthur Eddington en la que se ponía de manifiesto que la luz proveniente de estrellas lejanas se curvaba al pasar cerca del campo gravitatorio solar alterando la posición aparente de las estrellas cercanas al disco del Sol.

   Desde entonces muchos otros experimentos y aplicaciones han demostrado las predicciones de la relatividad general. Entre algunas de las predicciones se encuentran: Efectos gravitacionales Efectos de aceleración Desviamiento gravitacional de lúz hacia el rojo en presencia de campos con intensa gravedad: La frecuencia de la luz decrece al pasar por una región de elevada gravedad. Confirmado por el experimento de Pound-Rebka (1959). Dilatación gravitacional del tiempo: Los relojes situados en condiciones de gravedad elevada marcan el tiempo más lentamente que relojes situados en un entorno sin gravedad. Demostrado experimentalmente con relojes atómicos situados sobre la superficie terrestre y los relojes en órbita del Sistema de Posicionamiento Global (GPS por sus siglas en inglés).

   Efecto Shapiro (dilatación gravitacional de desfases temporales): Diferentes señales atravesando un campo gravitacional intenso necesitan mayor tiempo para atravesar dicho campo. Efectos orbitales Decaimiento orbital debido a la emisión de radiación gravitacional. Observado en púlsares binarios. Precesión geodésica: Debido a la curvatura del espacio-tiempo, la orientación de un giroscopio en rotación cambiará con el tiempo. Esto está siendo puesto a prueba por el satélite Gravity Probe B. Efectos rotatorios Esto implica el comportamiento del espacio-tiempo alrededor de un objeto masivo rotante. Fricción de marco. Un objeto en rotación va a arrastrar consigo al espacio-tiempo, causando que la orientación de un giroscopio cambie con el tiempo. Para una nave espacial en órbita polar, la dirección de este efecto es perpendicular a la precesión geodésica.

  Efectos de curvatura de la luz De acuerdo con la teoría de la relatividad general, la luz se curva al pasar cerca de objetos de elevada masa, originando una serie de fenómenos: La magnitud de este efecto es el doble de lo predicho por Newton. Confirmado por observaciones astronómicas durante un eclipse solar y de pulsares pasando detrás del sol. Fenómenos de lentes gravitacionales y de microlentes gravitacionales. Confirmada en una multitud de observaciones astrofísicas de campo profundo de galaxias lejanas. Anillos de Einstein: Un objeto directamente detrás de otro puede hacer que la luz del más distante parezca un anillo.

   Si el objeto está casi detrás, el resultado puede ser un arco. Fenómeno observado en galaxias lejanas. Efectos de ondas gravitacionales Existencia de ondas gravitacionales. Confirmada indirectamente por el decrecimiento del período de rotación en los sistemas binarios de pulsares. Efectos cosmológicos Ley de Hubble. Predicha por las soluciones cosmológicas de las ecuaciones de campo de Einstein. Su existencia fue confirmada por Edwin Hubble en 1929. Corrimiento hacia el rojo: La luz de las galaxias distantes se correrá hacia el rojo debido a que van alejando del observador. Gran Explosión: La evolución del Universo de la singularidad. Radiación del fondo cósmico: Los remanentes de una bola de fuego primordial. Descubierto por Arno Penzias y Robert Woodrow Wilson en 1965. Energía oscura: Energía invisible esparcida por el universo.

   Observaciones recientes de supernovas indican que se está acelerando la expansión del Universo. Las ecuaciones de campo de Einstein pueden soportar este tipo de Universo sólo si el 70% del estrés creado por la energía se haya en forma de materia oscura. Otras predicciones El principio de equivalencia fuerte: Incluso objetos que gravitan entorno a sí mismo van a responder a un campo gravitatorio externo en la misma manera que una partícula de prueba lo haría. Gravitones: De acuerdo con la mecánica cuántica, la radiación gravitacional debe ser compuesta por cuantos llamados gravitones. La relatividad general predice que estos serán partículas de espín-2. Todavía no han sido observados.

   Relación con otras teorías físicas En esta parte, la mecánica clásica y la relatividad especial están entrelazadas debido a que la relatividad general en muchos modos es intermediaria entre la relatividad general y la mecánica cuántica. Sujeto al principio de acoplamiento mínimo, las ecuaciones físicas de la relatividad especial pueden ser convertidas a su equivalente de la relatividad general al reemplazar la métrica de Minkowski (ηab) con la relevante métrica del espacio-tiempo (gab) y reemplazando cualquier derivada normal con derivadas covariantes. Inercia Tanto en mecánica cuántica como en relatividad se asumía que el espacio, y más tarde el espacio-tiempo, eran planos. En el leguaje de cálculo tensorial, esto significaba que Rabcd = 0, donde Rabcd es el tensor de curvatura de Riemann.

    En adición, se asumía que el sistema de coordenadas era un sistema de coordenadas cartesianas. Estas restricciones le permitían al movimiento inercial ser descrito matemáticamente como: donde xa es un vector de posición, , y τ es tiempo propio. Hay que notar que en la mecánica clásica, xa es tridimensional y τ ≡ t, donde t es una coordenada de tiempo. En la relatividad general, si estas restricciones son usadas en la forma de espacio-tiempo y en el sistema de coordenadas, éstas se perderán. Ésta fue la principal razón por la cual se necesitó una definición diferente de movimiento inercial. En la relatividad, el movimiento inercial ocurre en el espacio de Minkowski como parametrizada por el tiempo propio. Esto es expresado matemáticamente por la ecuación geodésica: donde es un símbolo de Christoffel (de otro modo conocido como conexión de Levi-Civita). Como x es un tensor de rango uno, estas ecuaciones son cuatro y cada una está describiendo al segundo derivado de una coordenada con respecto al tiempo propio. (En la métrica de Minkowski de la relatividad especial, los valores de conexión son todos ceros. Esto es lo que convierte a las ecuaciones geodésicas de la relatividad general en para la relatividad general.) Gravitación.

   En gravitación, la relación entre la teoría de la gravedad de Newton y la relatividad general son gobernadas por el principio de correspondencia: La relatividad general tiene que producir los mismos resultados, así como la gravedad lo hace en los casos donde la física newtoniana ha demostrado ser certera. Alrededor de objetos simétricamente esféricos, la teoría de la gravedad predice que los otros objetos serán acelerados hacia el centro por la regla donde M es la masa del objeto atraído, r es la distancia al objeto atraído, y es un vector de unidad identificando la dirección al objeto masivo. En la aproximación de campo débil de la relatividad general tiene que existir una aceleración en coordenadas idénticas.

   En la solución de Schwarzschild, la misma aceleración de la fuerza de gravedad es obtenida cuando la constante de integración es puesta igual a 2m (dondem=MG/c^2) Electromagnetismo El electromagnetismo sonaba el tañido fúnebre para la mecánica clásica, debido a que las ecuaciones de Maxwell no son invariancia galileana. Esto creaba un dilema que fue resuelto por el advenimiento de la relatividad especial. En forma de tensor, las ecuaciones de Maxwell son and , donde F ab es el tensor de campo electromagnético, y J a es un corriente-cuatro.

   El efecto de un campo electromagnético en un objeto cargado de masa m es entonces, donde P a es el cuadrimomento del objeto cargado. En la relatividad general, las ecuaciones de Maxwell se convierten en and . La ecuación para el efecto del campo electromagnético sigue siendo la misma, aunque el cambio de métrica modificará sus resultados. Conservación de energía-momentum En la mécanica clásica, la conservación de la energía y el momentum son manejados separadamente. En la relatividad especial, la energía y el momentum están unidos en el cuadrimomento y los tensores de energía.